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We study the influence of quenched disorder on the two-dimensional melting behavior of super-

paramagnetic colloidal particles, using both video microscopy and computer simulations of repulsive

parallel dipoles. Quenched disorder is introduced by pinning a fraction of the particles to an underlying

substrate. We confirm the occurrence of the Kosterlitz-Thouless-Halperin-Nelson-Young scenario and

observe an intermediate hexatic phase. While the fluid-hexatic transition remains largely unaffected by

disorder, the hexatic-solid transition shifts to lower temperatures with increasing disorder. This results in a

significantly broadened stability range of the hexatic phase. In addition, we observe spatiotemporal critical

(like) fluctuations, which are consistent with the continuous character of the phase transitions.

Characteristics of first-order transitions are not observed.
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Since the seminal work of Kosterlitz, Thouless [1,2],
Halperin, Nelson, and Young (KTHNY) [3–5] it has been
known that melting in two spatial dimensions can be
qualitatively different from three-dimensional bulk melt-
ing. While the latter is typically a phase transition of first
order, a two-stage scenario with an intervening hexatic
phase can emerge in two-dimensional systems, which is
separated from the isotropic fluid and solid phase by two
continuous transitions [6]. The KTHNY melting scenario
further predicts that, in two dimensions, the melting pro-
cess is mediated by the unbinding of thermally activated
topological defects. In particular, the emergence of the
hexatic phase is related to the dissociation of dislocation
pairs into isolated dislocations [2,7]. These break transla-
tional symmetry, leading to a vanishing shear modulus.
However, the orientational symmetry remains quasi long
range and the modulus of rotational stiffness, Frank’s
constant KA, attains a nonvanishing value [4]. It has been
shown that the KTHNY scenario is realized for soft long-
range pairwise potentials scaling with the inverse cube of
the particle separation [8,9]. In fact, video microscopy
experiments with superparamagnetic colloidal particles
pending at a two-dimensional air-water interface and
exposed to an external magnetic field perpendicular to
the interface have confirmed the KTHNY scenario in detail
[10–12]. Further reports on soft repulsive particles in two
dimensions are in favor of the KTHNY scenario [13–15]
while in systems with very short-ranged or hard-core par-
ticle interactions, first-order characteristics were found for
both transitions [16,17]. Here, we investigate whether the
continuous melting including critical fluctuations persists
in the presence of quenched disorder or whether first-order
signatures emerge instead [18].

Pure 2D bulk systems are rare in nature; planar confine-
ment is typically realized by adsorption on an interface,
such that crystallization usually occurs on solid substrates

(examples include graphene sheets, see Ref. [19]) which
introduce quenched (i.e., frozen-in) disorder due to some
roughness. The same holds for flux lines pinned by impu-
rities [20–23], which leads to large critical fields in type II
superconductors. Defects may also affect the phase behav-
ior of freely suspended liquid crystal films [24], of syn-
thetic [25] and biological [26] Langmuir Blodgett films, or
even 2D protein crystals [27]. Based on a topological
defect analysis for weak disorder, Nelson and co-workers
[28,29] have predicted that the KTHNY scenario persists
with a widening of the hexatic stability range for increasing
strength of quenched disorder. This notion was questioned
in subsequent theoretical studies [30]. More recent experi-
mental efforts [31–34], simulations [35–37], and theories
[38] have markedly increased our understanding of two-
dimensional melting under disorder, but the occurrence of
the hexatic phase was never resolved in all of these studies.
Therefore, the above-mentioned predictions of Nelson and
co-workers [28,29] have never been tested by experiment
or simulations.
In this Letter, we propose an experiment on superpar-

amagnetic colloids on a glass substrate on which a small
fraction of the particles is pinned, inducing quenched dis-
order. Clearly, as a reference, the KTHNY scenario occurs
for the pure case without any disorder on a pinning-free air-
water interface [10,12]. We can now systematically study
the melting scenario in detail for different fractions of
pinned particles. In our experiments, we confirm the
KTHNY scenario and the predictions by Nelson and co-
workers [28,29] under disorder. The stability range of the
hexatic phase widens upon increasing disorder as opposed
to the prediction of Ref. [30]. We also perform two-
dimensional computer simulations for parallel dipoles
and find good agreement with our experimental data.
Extracting an ‘‘effective’’ KA, we recover the scaling of
the elasticity modulus in the presence of disorder. Thereby,
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we provide evidence that melting in the presence of dis-
order is governed by the same defect-mediated process
predicted and confirmed for pure systems. Furthermore,
we observe heterogeneous orientational order close to the
melting temperature but a long-time analysis reveals that
such heterogeneities fluctuate strongly on time scales
larger than the orientational correlation time indicating
critical behavior.

The experimental system consists of superparamagnetic
colloidal particles which are confined in two dimensions
and subject to quenched disorder embodied by a random
distribution of fixed particles. The colloidal suspension is
kept at room temperature and an external magnetic field H
applied perpendicular to the particle layer induces a repul-
sive dipole-dipole potential VðrÞ ¼ �0ð�HÞ2=r3, where �
denotes the magnetic susceptibility [39] and r the particle
distance. The phase behavior is studied by tuning the
interaction strength via the external magnetic field, quan-
tified by the dimensionless interaction parameter

� ¼ �0ð�nÞ3=2ð�HÞ2
kBT

; (1)

with the 2D particle density n and the thermal energy kBT.
The particles have a diameter d ¼ 4:5 �m and the mass
density 1:7 kg=dm3. The suspension is sealed within a cell
consisting of two parallel cover slips glued together via a
hollow cylindrical glass spacer of 5 mm diameter. By
gravity, the particles sediment and form a monolayer on
the bottom glass plate, where a short-time lateral diffusion
constant of D ¼ 0:0295 �m2=s is observed. Because of
van-der-Waals interactions and chemical reactions
between colloids and the glass surface, a small amount of
particles pin to the substrate. This distribution is slowly
altered by thermal tearing or the creation of new pinning
connections, but the pinned particles are fixed on the time
scale of our measurements. We exemplify three different
sample regions with varying pinning strengths ranging
from approximately 0.5% to 0.8%. The colloidal ensemble
is melted from an equilibrated crystalline state by decreas-
ing H in small steps. After each step, the system is allowed
to equilibrate for at least 24 hours before particle trajecto-
ries are recorded via video microscopy [40] for 2.7 hours,
which equals � 50�B.

Complementary, computer simulations are carried out in
the NAT ensemble, with A denoting the area of the system.
The total particle number is fixed to N ¼ 16000 and peri-
odic boundary conditions are applied. Each pinning
strength is sampled with at least 15 statistically indepen-
dent configurations of obstacles, which are achieved by
pinning randomly selected particles in a fluid configuration
of hard disks at a packing fraction of 0.25%. Within
statistical precision, this realization of pinning corresponds
to the distribution of pinned particles observed in the
experiment. Using the standard Metropolis Monte Carlo
(MC) algorithm, a full freezing and melting cycle is

conducted for each particular setup at which the initially
chosen particles remain pinned. After incrementing � /
1=T, the system is equilibrated for 5� 105 MC sweeps
before recording data. While Monte Carlo methods are
known to converge rapidly towards static equilibrium
states, the underlying phase-space sampling provides a
suitable means to study dynamic properties, as well [41].
For each parameter set of temperature and pinning
strength, the observables obtained by MC simulations are
averaged over all sample realizations of disorder.
The KTHNY theory predicts a two-step melting process,

in which the isotropic fluid and solid phase are separated
by an intermediate hexatic phase. While translational order
is only short range in the hexatic phase, orientational order
persists. More precisely, it switches from long range in the
solid over quasi long range in the hexatic phase to short
range in the isotropic fluid. The characteristic range of
orientational order in the different phases can be quantified
in terms of the correlation g6ðr; tÞ of the bond order
parameter

c 6 ¼ 1

nj

X

k

ei6�jk ; (2)

where the sum goes over all nj nearest neighbors of particle

j, and �jk is the angle of the kth bond in respect to a certain

reference axis. Mapping the characteristic ranges of the
spatial orientational order on the time domain, we can
study the dynamical orientational correlation g6ðtÞ ¼
hc �

6ðtÞc 6ð0Þi, which, analogously to the spatial correla-

tion, decays exponentially in the isotropic fluid, and alge-
braically in the hexatic phase, and approaches a constant
value in the solid [42]. This quantity is well suited to
characterize the melting process, as discussed in
Refs. [8,9] and successfully employed experimentally in
Ref. [10].
Figure 1 shows g6ðtÞ for both, experiment (0.48% pin-

ning) and simulation (0.5%). The time axis is reduced to
the Brownian time scale �B ¼ ðd=2Þ2=D. After a short-
time decay due to Brownian motion, the characteristic
behavior of the solid, the hexatic (linear decay in the log-
log plot), and isotropic fluid is clearly distinguishable at
long times. To confirm the characteristic decay behavior,
g6ðtÞ is fitted with a second-order polynomial fit on a
double-logarithmic scale: lnðg6ðtÞÞ ¼ aþ b lnðt=�BÞ þ
cln2ðt=�BÞ, with dimensionless coefficients a, b, and c.
Solid, hexatic, and isotropic fluid phases are characterized
by the relative contribution of positive or negative curva-
ture, expressed by c=jbj. We define an upper and a lower
threshold value for c=jbj to distinguish between the nega-
tively curved exponential decay of g6ðtÞ in the isotropic
fluid, positive curvature in the solid, and a linear course in
between, reflecting the hexatic phase (for further details
and an evaluation of the spatial bond order correlation
function see the Supplemental Material [43]).
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To illustrate the critical behavior at the transition points,
we determine the orientational correlation time �t and an
‘‘effective’’ Frank’s constant KA, characterizing the elastic
response of topological defects to torsion in the presence of
pinned particles (see Fig. 2). The parameters are extracted

from exponential fits �e�t=�t in the isotropic fluid and

algebraic fits �t�6=2 in the hexatic phase, where the ori-
entational exponent�6 ¼ 18kBT=�KA is inversely propor-
tional to Frank’s constant. In the isotropic fluid, KA is zero
due to the appearance of isolated disclinations. The

corresponding stress field ‘‘absorbs’’ external torsion by
diffusion and/or rotation. Approaching the hexatic-
isotropic fluid transition at the temperature ��1

i �
0:0148, �t diverges, and KA jumps to the finite value
72=�. In the hexatic phase, KA remains constant due to
the presence of quasi–long-range orientational order: a
torsion would mediate a separation of dislocations into
isolated disclinations, inducing a change in the strain field
at a finite stress response. Approaching the solid-hexatic
transition, the elastic response to a torsion increases due
to the decreasing number of isolated dislocations.
Simultaneously, KA diverges. Our data indicate that, in
the presence of disorder, the divergent behavior of
Frank’s constant spreads. More precisely, KA increases at
lower temperatures for higher pinning strengths, which
means that the hexatic-solid transition temperature
��1
m strongly depends on disorder, as proposed in

Refs. [28,29,35]. Furthermore, this implies the reduction
of torsional stiffness at a fixed temperature: in the presence
of pinned particles, the response to a torsional stimulus
becomes more elastic.
To emphasize the consequences of these distinct char-

acteristics at the transitions on the phase behavior of the
system, the two-step melting process is mapped to the
parameter plane of temperature and pinning strength.
Figure 3 shows the resulting phase diagram. In the cooling
and heating cycle of the simulations no hysteresis was
found, as is typical for continuous transitions—see the
Supplemental Material [43] for details and additional
evaluation of our data indicating the continuous nature of
the phase transition. The hexatic-isotropic fluid transition
is found to remain largely unaffected by pinning; the
transition temperature ��1

i is barely shifted by disorder.
In contrast, the hexatic-solid phase boundary is strongly

FIG. 2 (color online). (a) Orientational correlation time �t and
(b) Frank’s constant KA, for different concentrations of pinned
particles. Filled symbols represent experimental data, open sym-
bols simulation. The meaning of the symbols is the same in (a)
and (b); lines are guides to the eye. While �t is almost not
affected by different pinning strengths, KA is clearly lowered
with increasing pinning.

FIG. 1 (color online). Temporal bond orientational correlation
function g6ðtÞ in the presence of quenched disorder plotted
versus reduced time t=�B on a double-logarithmic scale. The
fraction of pinned particles is 0.48% in the experiment and 0.5%
in the simulation. Exemplary curves are shown for the isotropic
fluid [green (light gray)], hexatic [red (black)], and solid [blue
(dark gray)] phase, where experimental data are drawn with solid
lines, and computer simulations with dashed lines.

FIG. 3 (color online). Phase diagram indicating the solid [blue
(dark gray)], hexatic [red (light gray)] and isotropic fluid [green
(medium gray)] phase in the parameter space of temperature /
��1 and pinning strength. Full symbols represent experimental
data, while open symbols correspond to simulation results.
Letters indicate the location of snapshots in Fig. 4.
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influenced. The transition temperature is shifted signifi-
cantly towards lower values for increasing numbers of
pinned particles. This can be explained qualitatively con-
sidering the influence of pinned sites on the distinct sym-
metries: a pinned particle causes a strain field in its vicinity
and therefore shifts particles to release the created stress.
Orientational order can be recovered, since particles are
able to adjust the orientational field c 6 to their local
environment by slight displacements. However, the
hexatic-solid transition is governed by a significant change
in translational order. If pinned particles are displaced from
their ideal lattice position, a positional lack can only be
restored by bending lattice lines. Moreover, the shear
modulus is zero in the isotropic fluid and hexatic phase,
which disburdens the conservation of order by adjusting
the strain. As a result, the stability range of the hexatic
phase widens with increasing disorder, which is in accor-
dance with theoretical predictions [28,29]. In addition, this
effect seems to become more crucial for higher disorder
strengths, resulting in a curved behavior of the hexatic-
solid phase boundary. This suggests the existence of a
critical disorder strength, above which the system is not
able to form an ordered state [35], but rather becomes an
amorphous solid in the form of a hexatic glass [31,33],
depending on the range of quenched disorder [38].

To determine the dynamics of the orientational order in
space, we illustrate the magnitude and spatial distribution
of the orientational order parameter hjc 6jit, averaged over
a finite time window of� 50�B [see Figs. 4(a)–4(c)]. In the
solid phase, orientational order is homogeneous and per-
sistent in time. It is only locally reduced by thermally
activated, short living dislocation pairs. In the hexatic
and isotropic fluid phase, the magnitudes of hjc 6jit
decrease and are subject to a strongly heterogeneous spa-
tial pattern on various length scales. This behavior can
equally be observed in computer simulation snapshots
(see the Supplemental Material [43]). Similar heterogene-
ities were reported for an impurity-free two-dimensional
Lennard-Jones system [44]. The observed heterogeneities
of the orientational order field close to �i are spatiotem-
poral and reflect criticallike fluctuations at the hexatic-
isotropic fluid transition, thus confirming our finding that
this transition is continuous [see movie 1 and 2 in
the Supplemental Material [43] covering a time window
two decades larger (up to � 4000�B) compared to
Figs. 4(a)–4(c)].

To exhibit the proximate effects of the pinned sites, we
compare the spatial dynamics of particles in the vicinity of
and far away from pinning centers for an intermediate
pinning strength [see Fig. 4(d)]. While in the isotropic fluid
the mean square displacement is decreased near pinning, it
is increased in the solid. The inhibited dynamics in the
disordered phase can be explained by the confining char-
acter of the pinned sites. Conversely, the local dynamics in
the solid seems to be increased near pinning. This might be

related to an increased probability of dislocation pair
unbinding induced by quenched disorder [28,35]. The
crossover lies in the hexatic phase at ��1 � 0:0144, close
to the solid-hexatic phase transition, which supports our
finding that this transition is more affected by quenched
disorder than the hexatic-isotropic liquid one.
In conclusion, we investigated the melting transition of

2D crystals under quenched disorder in the form of pinning
sites. Analyzing the dynamics of the orientational correla-
tion, we probed the disorder vs temperature phase diagram
and determined the orientational correlation time and
Frank’s constant. Both show divergent behavior at the
corresponding phase transition, confirming the continuous
melting character of the KTHNY scenario. While the
hexatic-isotropic fluid transition is rather unaffected by
pinning, the transition from the solid to the hexatic phase
is strongly influenced, resulting in a significant broadening
of the hexatic phase. In addition, we observed spatiotem-
poral dynamical heterogeneities of the orientational order
parameter (see the movies in the Supplemental Material
[43]), marking critical(like) fluctuations, whereas first-
order characteristics are not observed. In comparison to
the bulk, the local dynamics of particles in the vicinity of
pinned sites is decreased in the isotropic liquid, which is
not directly reflected by a localization of the fluctuations of
the order parameter (see the movies in the Supplemental
Material [43]). The further investigation of 2D systems
with this kind of weak quenched disorder might reveal

FIG. 4 (color online). (a)–(c) Snapshots of the experimental
system at 0.48% pinning, showing the local orientational order
parameter hjc 6jit averaged over � 50�B in the different phases
[(a) ��1 ¼ 0:0117, (b) ��1 ¼ 0:0143, (c) ��1 ¼ 0:0154]. The
field of view is 450� 450 �m. Voronoi cells are color coded
according to the bar on the left. (d) Mean square displacement
(MSD) calculated for particles within a distance of 8d around
pinning sites (region I in the inset) and more than 24d away from
them (region II). Temperatures correspond to (a)–(c).
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the role of critical fluctuations in the disorder-mediated
melting process and also opens the field of hexatic mem-
branes with adatoms or molecules. Using weak random
potentials or (quasi)crystalline structures, commensurable
and incommensurable crystal transitions come into focus,
and for strong disorder, crystal to amorphous solid transi-
tions can be investigated.
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